FAST IMPLEMENTATION OF DIJKSTRA'S ALGORITHM FOR THE LARGE-SCALE SHORTEST PATH PROBLEM
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA new algorithm for shortest path problem in large-scale graph
The shortest path problem is one of the basic problems in graph theory, which attracted a lot of attention of many scholars. However, with the continuous development of intelligent transportation, communications systems, many complex network structures with large-scale nature occurred, which have a larger amount of data and algorithm execution efficiency requirement, compared with the tradition...
متن کاملApproximation Solutions for Time-Varying Shortest Path Problem
Abstract. Time-varying network optimization problems have tradition-ally been solved by specialized algorithms. These algorithms have NP-complement time complexity. This paper considers the time-varying short-est path problem, in which can be optimally solved in O(T(m + n)) time,where T is a given integer. For this problem with arbitrary waiting times,we propose an approximation algorithm, whic...
متن کاملFast Shortest Path Computation for Solving the Multicommodity Flow Problem
For solving the multicommodity flow problems, Lagrangian relaxation based algorithms are fast in practice. The time-consuming part of the algorithms is the shortest path computations in solving the Lagrangian dual problem. We show that an A* search based algorithm is faster than Dijkstra’s algorithm for the shortest path computations when the number of demands is relatively smaller than the siz...
متن کاملImplementation Issues for the Reliable A Priori Shortest Path Problem
research aims to find a priori paths that are shortest to ensure a specified probability of on-time arrival. The authors (28) have shown that the RASP belongs to a class of multiple-criteria shortest path problems that rely on a dominance relationship to obtain Paretooptimal solutions (7, 16, 29); that is, no further travel time improvements associated with any on-time arrival probability can b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Operations Research Society of Japan
سال: 2011
ISSN: 1349-8940,2188-8280
DOI: 10.15807/torsj.54.58